146 research outputs found

    Posterior Matching Scheme for Gaussian Multiple Access Channel with Feedback

    Full text link
    Posterior matching is a method proposed by Ofer Shayevitz and Meir Feder to design capacity achieving coding schemes for general point-to-point memoryless channels with feedback. In this paper, we present a way to extend posterior matching based encoding and variable rate decoding ideas for the Gaussian MAC with feedback, referred to as time-varying posterior matching scheme, analyze the achievable rate region and error probabilities of the extended encoding-decoding scheme. The time-varying posterior matching scheme is a generalization of the Shayevitz and Feder's posterior matching scheme when the posterior distributions of the input messages given output are not fixed over transmission time slots. It turns out that the well-known Ozarow's encoding scheme, which obtains the capacity of two-user Gaussian channel, is a special case of our extended posterior matching framework as the Schalkwijk-Kailath's scheme is a special case of the point-to-point posterior matching mentioned above. Furthermore, our designed posterior matching also obtains the linear-feedback sum-capacity for the symmetric multiuser Gaussian MAC. Besides, the encoding scheme in this paper is designed for the real Gaussian MAC to obtain that performance, which is different from previous approaches where encoding schemes are designed for the complex Gaussian MAC. More importantly, this paper shows potential of posterior matching in designing optimal coding schemes for multiuser channels with feedback.Comment: submitted to the IEEE Transactions on Information Theory. A shorter version has been accepted to IEEE Information Theory Workshop 201

    On the Capacity of Symmetric Gaussian Interference Channels with Feedback

    Full text link
    In this paper, we propose a new coding scheme for symmetric Gaussian interference channels with feedback based on the ideas of time-varying coding schemes. The proposed scheme improves the Suh-Tse and Kramer inner bounds of the channel capacity for the cases of weak and not very strong interference. This improvement is more significant when the signal-to-noise ratio (SNR) is not very high. It is shown theoretically and numerically that our coding scheme can outperform the Kramer code. In addition, the generalized degrees-of-freedom of our proposed coding scheme is equal to the Suh-Tse scheme in the strong interference case. The numerical results show that our coding scheme can attain better performance than the Suh-Tse coding scheme for all channel parameters. Furthermore, the simplicity of the encoding/decoding algorithms is another strong point of our proposed coding scheme compared with the Suh-Tse coding scheme. More importantly, our results show that an optimal coding scheme for the symmetric Gaussian interference channels with feedback can be achieved by using only marginal posterior distributions under a better cooperation strategy between transmitters.Comment: To appear in Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong, June 14-19, 201

    The Reliability Function of Lossy Source-Channel Coding of Variable-Length Codes with Feedback

    Full text link
    We consider transmission of discrete memoryless sources (DMSes) across discrete memoryless channels (DMCs) using variable-length lossy source-channel codes with feedback. The reliability function (optimum error exponent) is shown to be equal to max⁑{0,B(1βˆ’R(D)/C)},\max\{0, B(1-R(D)/C)\}, where R(D)R(D) is the rate-distortion function of the source, BB is the maximum relative entropy between output distributions of the DMC, and CC is the Shannon capacity of the channel. We show that, in this setting and in this asymptotic regime, separate source-channel coding is, in fact, optimal.Comment: Accepted to IEEE Transactions on Information Theory in Apr. 201

    Fundamental limits and algorithms for sparse linear regression with sublinear sparsity

    Full text link
    We establish exact asymptotic expressions for the normalized mutual information and minimum mean-square-error (MMSE) of sparse linear regression in the sub-linear sparsity regime. Our result is achieved by a generalization of the adaptive interpolation method in Bayesian inference for linear regimes to sub-linear ones. A modification of the well-known approximate message passing algorithm to approach the MMSE fundamental limit is also proposed, and its state evolution is rigorously analyzed. Our results show that the traditional linear assumption between the signal dimension and number of observations in the replica and adaptive interpolation methods is not necessary for sparse signals. They also show how to modify the existing well-known AMP algorithms for linear regimes to sub-linear ones.Comment: 45 pages, 2 figures. Under review for publication. Add some auxiliary proof

    Global Convergence Rate of Deep Equilibrium Models with General Activations

    Full text link
    In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium Model (DEQ) with ReLU activation. They proved that the gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. This paper shows that this fact still holds for DEQs with any general activation that has bounded first and second derivatives. Since the new activation function is generally non-linear, bounding the least eigenvalue of the Gram matrix of the equilibrium point is particularly challenging. To accomplish this task, we need to create a novel population Gram matrix and develop a new form of dual activation with Hermite polynomial expansion.Comment: 32 pages. arXiv admin note: text overlap with arXiv:2205.13814 by other author
    • …
    corecore